Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7590, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555385

RESUMO

Large volume soft tissue defects greatly impact patient quality of life and function while suitable repair options remain a challenge in reconstructive surgery. Engineered flaps could represent a clinically translatable option that may circumvent issues related to donor site morbidity and tissue availability. Herein, we describe the regeneration of vascularized porcine flaps, specifically of the omentum and tensor fascia lata (TFL) flaps, using a tissue engineering perfusion-decellularization and recellularization approach. Flaps were decellularized using a low concentration sodium dodecyl sulfate (SDS) detergent perfusion to generate an acellular scaffold with retained extracellular matrix (ECM) components while removing underlying cellular and nuclear contents. A perfusion-recellularization strategy allowed for seeding of acellular flaps with a co-culture of human umbilical vein endothelial cell (HUVEC) and mesenchymal stromal cells (MSC) onto the decellularized omentum and TFL flaps. Our recellularization technique demonstrated evidence of intravascular cell attachment, as well as markers of endothelial and mesenchymal phenotype. Altogether, our findings support the potential of using bioengineered porcine flaps as a novel, clinically-translatable strategy for future application in reconstructive surgery.


Assuntos
Bioengenharia , Qualidade de Vida , Humanos , Suínos , Animais , Bioengenharia/métodos , Engenharia Biomédica , Perfusão , Retalhos Cirúrgicos , Matriz Extracelular , Tecidos Suporte , Engenharia Tecidual/métodos
2.
J Vis Exp ; (184)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35758716

RESUMO

Patients with severe traumatic injuries and tissue loss require complex surgical reconstruction. Vascularized composite allotransplantation (VCA) is an evolving reconstructive avenue for transferring multiple tissues as a composite subunit. Despite the promising nature of VCA, the long-term immunosuppressive requirements are a significant limitation due to the increased risk of malignancies, end-organ toxicity, and opportunistic infections. Tissue engineering of acellular composite scaffolds is a potential alternative in reducing the need for immunosuppression. Herein, the procurement of a rat hindlimb and its subsequent decellularization using sodium dodecyl sulfate (SDS) is described. The procurement strategy presented is based upon the common femoral artery. A machine perfusion-based bioreactor system was constructed and used for ex vivo decellularization of the hindlimb. Successful perfusion decellularization was performed, resulting in a white translucent-like appearance of the hindlimb. An intact, perfusable, vascular network throughout the hindlimb was observed. Histological analyses showed the removal of nuclear contents and the preservation of tissue architecture across all tissue compartments.


Assuntos
Alotransplante de Tecidos Compostos Vascularizados , Animais , Reatores Biológicos , Circulação Extracorpórea , Membro Posterior/cirurgia , Humanos , Perfusão , Ratos
3.
Front Surg ; 9: 843677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693318

RESUMO

Traumatic injuries or cancer resection resulting in large volumetric soft tissue loss requires surgical reconstruction. Vascular composite allotransplantation (VCA) is an emerging reconstructive option that transfers multiple, complex tissues as a whole subunit from donor to recipient. Although promising, VCA is limited due to side effects of immunosuppression. Tissue-engineered scaffolds obtained by decellularization and recellularization hold great promise. Decellularization is a process that removes cellular materials while preserving the extracellular matrix architecture. Subsequent recellularization of these acellular scaffolds with recipient-specific cells can help circumvent adverse immune-mediated host responses and allow transplantation of allografts by reducing and possibly eliminating the need for immunosuppression. Recellularization of acellular tissue scaffolds is a technique that was first investigated and reported in whole organs. More recently, work has been performed to apply this technique to VCA. Additional work is needed to address barriers associated with tissue recellularization such as: cell type selection, cell distribution, and functionalization of the vasculature and musculature. These factors ultimately contribute to achieving tissue integration and viability following allotransplantation. The present work will review the current state-of-the-art in soft tissue scaffolds with specific emphasis on recellularization techniques. We will discuss biological and engineering process considerations, technical and scientific challenges, and the potential clinical impact of this technology to advance the field of VCA and reconstructive surgery.

4.
Front Mol Biosci ; 8: 636746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169091

RESUMO

In normal anaphase cells, telomeres of each separating chromosome pair are connected to each other by tethers. Tethers are elastic at the start of anaphase: arm fragments cut from anaphase chromosomes in early anaphase move across the equator to the oppositely-moving chromosome, telomere moving toward telomere. Tethers become inelastic later in anaphase as the tethers become longer: arm fragments no longer move to their partners. When early anaphase cells are treated with Calyculin A (CalA), an inhibitor of protein phosphatases 1 (PP1) and 2A (PP2A), at the end of anaphase chromosomes move backward from the poles, with telomeres moving toward partner telomeres. Experiments described herein show that in cells treated with CalA, backwards movements are stopped in a variety of ways, by cutting the tethers of backwards moving chromosomes, by severing arms of backwards moving chromosomes, by severing arms before the chromosomes reach the poles, and by cutting the telomere toward which a chromosome is moving backwards. Measurements of arm-fragment velocities show that CalA prevents tethers from becoming inelastic as they lengthen. Since treatment with CalA causes tethers to remain elastic throughout anaphase and since inhibitors of PP2A do not cause the backwards movements, PP1 activity during anaphase causes the tethers to become inelastic.

5.
Mol Ther ; 29(3): 1138-1150, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279723

RESUMO

Cardiac fibrosis is a common pathological feature of cardiac hypertrophy. This study was designed to investigate a novel function of Yes-associated protein (YAP) circular RNA, circYap, in modulating cardiac fibrosis and the underlying mechanisms. By circular RNA sequencing, we found that three out of fifteen reported circYap isoforms were expressed in nine human heart tissues, with the isoform hsa_circ_0002320 being the highest. The levels of this isoform in the hearts of patients with cardiac hypertrophy were found to be significantly decreased. In the pressure overload mouse model, the levels of circYap were reduced in mouse hearts with transverse aortic constriction (TAC). Upon circYap plasmid injection, the cardiac fibrosis was attenuated, and the heart function was improved along with the elevation of cardiac circYap levels in TAC mice. Tropomyosin-4 (TMP4) and gamma-actin (ACTG) were identified to bind with circYap in cardiac cells and mouse heart tissues. Such bindings led to an increased TPM4 interaction with ACTG, resulting in the inhibition of actin polymerization and the following fibrosis. Collectively, our study uncovered a novel molecule that could regulate cardiac remodeling during cardiac fibrosis and implicated a new function of circular RNA. This process may be targeted for future cardio-therapy.


Assuntos
Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibrose/prevenção & controle , Miócitos Cardíacos/metabolismo , RNA Circular/genética , Fatores de Transcrição/metabolismo , Tropomiosina/metabolismo , Actinas/genética , Animais , Proteínas de Ciclo Celular/genética , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Polimerização , Fatores de Transcrição/genética , Tropomiosina/genética , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...